skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Ward, Emily"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. unknown (Ed.)
    Today’s data-driven world requires earth and environmental scientists to have skills at the intersection of domain and data science. These skills are imperative to harness information contained in a growing volume of complex data to solve the world's most pressing environmental challenges. Despite the importance of these skills, Earth and Environmental Data Science (EDS) training is not equally accessible, contributing to a lack of diversity in the field. This creates a critical need for EDS training opportunities designed specifically for underrepresented groups. In response, we designed the Earth Data Science Corps (EDSC) which couples a paid internship for undergraduate students with faculty training to build capacity to teach and learn EDS using Python at smaller Minority Serving Institutions. EDSC participants are further empowered to teach these skills at their home institutions which scales the program beyond the training lead by our team. Using a Rasch modeling approach, we found that participating in the EDSC program had a significant impact on learners’ comfort and confidence with technical and non-technical data science skills, as well as their science identity and sense of belonging in science, two critical aspects of recruiting and retaining members of underrepresented groups in STEM. 
    more » « less
  2. Working memory (WM) is critical to many aspects of cognition, but it frequently fails. Much WM research has focused on capacity limits, but even for single, simple features, the fidelity of individual representations is limited. Why is this? One possibility is that, because of neural noise and interference, neural representations do not remain stable across a WM delay, nor do they simply decay, but instead, they may “drift” over time to a new, less accurate state. We tested this hypothesis in a functional magnetic resonance imaging study of a match/nonmatch WM recognition task for a single item with a single critical feature: orientation. We developed a novel pattern-based index of “representational drift” to characterize ongoing changes in brain activity patterns throughout the WM maintenance period, and we were successfully able to predict performance on the match/nonmatch recognition task using this representational drift index. Specifically, in trials where the target and probe stimuli matched, participants incorrectly reported more nonmatches when their activity patterns drifted away from the target. In trials where the target and probe did not match, participants incorrectly reported more matches when their activity patterns drifted toward the probe. On the basis of these results, we contend that neural noise does not cause WM errors merely by degrading representations and increasing random guessing; instead, one means by which noise introduces errors is by pushing WM representations away from the target and toward other meaningful (yet incorrect) configurations. Thus, we demonstrate that behaviorally meaningful drift within representation space can be indexed by neuroimaging. 
    more » « less